Automatic Road Extraction from Irs Satellite Images in Agricultural and Desert Areas
نویسنده
چکیده
The appearance of roads in northern Africa differs from that of roads, e.g., in central Europe, which most of the approaches for automated road extraction in literature focus on. In this paper we propose a road model for areas with different road appearance in IRS satellite image data with a panchromatic resolution of 5 m and 20 m multispectral resolution. We model areas where water makes agriculture possible on one hand, and areas dominated by the desert and dry mountainous areas on the other hand. In the desert and mountainous areas paved roads appear as more or less distinct lines and the Steger line extraction algorithm can be used to extract roads in combination with global grouping. In mountainous areas detected, e.g., in a DEM, much larger curvatures are expected to occur than in the desert. In agricultural areas, on which we focus in this paper, roads often do not appear as distinct lines. Borders of the fields represented by edges in the image and the knowledge that these borders can be collinearly grouped, possibly together with lines, into longer linear structures are used to construct road sections. To close gaps, pairs of lines or edges are connected by ziplock snakes. To verify these road sections, the paths of the snakes are evaluated using the line strength and the gradient image. The verified road sections are finally globally grouped using the knowledge that roads construct a network between important points. Gaps which have a high impact on the network topology are closed if evidence supporting this is found in the image. Results show the validity of the approach.
منابع مشابه
Object-Oriented Method for Automatic Extraction of Road from High Resolution Satellite Images
As the information carried in a high spatial resolution image is not represented by single pixels but by meaningful image objects, which include the association of multiple pixels and their mutual relations, the object based method has become one of the most commonly used strategies for the processing of high resolution imagery. This processing comprises two fundamental and critical steps towar...
متن کاملMonitoring of organic matter and soil salinity by using IRS - LissIII satellite data in the Harat plain, of Yazd province
Current study monitored Electerical Conductivity (EC) as soil salinity index and Organic Matter (OM) in the area of Harat in Yazd, Iran, through remote sensing technology with high spatial and spectral resolution. The images were selected from IRS, LISS III satellites between the years 2008 and 2012. After preprocessing and analyzing the images, the relationship between parameters of (EC) an...
متن کاملAutomatic Road Detection and Extraction From MultiSpectral Images Using a New Hierarchical Object-based Method
Road detection and Extraction is one of the most important issues in photogrammetry, remote sensing and machine vision. A great deal of research has been done in this area based on multispectral images, which are mostly relatively good results. In this paper, a novel automated and hierarchical object-based method for detecting and extracting of roads is proposed. This research is based on the M...
متن کاملKohonen Self Organizing for Automatic Identification of Cartographic Objects
Automatic identification and localization of cartographic objects in aerial and satellite images have gained increasing attention in recent years in digital photogrammetry and remote sensing. Although the automatic extraction of man made objects in essence is still an unresolved issue, the man made objects can be extracted from aerial photos and satellite images. Recently, the high-resolution s...
متن کاملReducing Light Change Effects in Automatic Road Detection
Automatic road extraction from aerial images can be very helpful in traffic control and vehicle guidance systems. Most of the road detection approaches are based on image segmentation algorithms. Color-based segmentation is very sensitive to light changes and consequently the change of weather condition affects the recognition rate of road detection systems. In order to reduce the light change ...
متن کامل